Non sempre è facile capire quali siano le differenze tra i vaccini anti Covid-19 – che, come sappiamo, sono numerosi.
Da quando è stato isolato e identificato il virus SARS-CoV-2 e ne è stata resa nota la sequenza genetica, a gennaio dello scorso anno [1], in tutto il mondo è iniziata la corsa alla messa a punto di un vaccino sicuro ed efficace contro Covid-19. Secondo la panoramica dell’Organizzazione Mondiale della Sanità [2], un mese fa erano più di 200 i vaccini in via di sviluppo, di cui 52 in corso di sperimentazione clinica sulla popolazione umana, e 20 arrivati agli studi di fase 3, quelli che ne determineranno l’efficacia [3].
Tutti i vaccini anti Covid-19 attualmente in studio sono stati messi a punto per indurre una risposta immunitaria diretta contro la proteina S, la proteina che SARS-CoV-2 utilizza per infettare le cellule [4].
Ci sono però delle differenze tra i vaccini anti Covid-19, perché a seconda del meccanismo d’azione cambia il modo in cui ogni vaccino induce la risposta contro la proteina S.
Quindi ci sono differenze tra i vaccini anti Covid-19, ma tutti lavorano per bloccare la proteina S: come mai è così importante?
Il SARS-CoV-2 è costituito da un singolo filamento di acido ribonucleico (RNA), circondato da un involucro di proteine. Una di queste proteine (la proteina S, o “Spike”) viene usata dal virus per agganciarsi al recettore ACE2 sulla membrana cellulare e infettare la cellula [5]. La proteina S gioca un ruolo cruciale non solo nel momento in cui SARS-CoV-2 fa il suo ingresso nella cellula, ma anche quando il sistema immunitario reagisce all’infezione. Fra gli studi che lo dimostrano ce n’è uno dell’università cinese di Beijing che ha permesso di rilevare anticorpi in grado di riconoscere e neutralizzare la proteina S nel plasma di pazienti con Covid-19 [6]. L’obiettivo è, quindi, realizzare un vaccino che trasferisca nell’organismo umano almeno una subunità di questa proteina, in modo da addestrare il sistema immunitario di chi lo riceve a reagire in modo efficace in caso di contagio da SARS-CoV-2.
Le differenze tra i vaccini anti Covid-19 sono legate alle tipologie di sviluppo, ma quali sono in corso di sperimentazione?
Come dicevamo, le differenze tra i vaccini anti Covid-19 sono riconducibili ai differenti approcci tecnologici nello sviluppo del farmaco, che nel caso specifico si possono ricondurre a quattro principali tipologie:
- Vaccini attenuati: contengono una versione viva ma indebolita di SARS-CoV-2, ottenuta rimuovendo i geni responsabili della virulenza. I vaccini contro la tubercolosi e il morbillo sono due esempi di vaccini attenuati. Al momento sono solo tre i vaccini candidati anti Covid-19, in corso di sperimentazione in India e in Turchia [4], prodotti a partire da questa tecnologia.
- Vaccini inattivati: si parte da una versione inattiva del SARS-CoV-2, ottenuta coltivando il virus in laboratorio e rendendolo inattivo con l’impiego di metodi fisici o chimici. I vaccini contro la poliomielite, l’epatite A e l’influenza, per fare qualche esempio, sono vaccini virali inattivati. Questo tipo di approccio ha il vantaggio, rispetto alla tipologia precedente, di sollevare meno criticità sul piano della sicurezza, riuscendo comunque a trasferire alla cellula proteine virali [4] che il sistema immunitario può utilizzare per produrre anticorpi specifici contro SARS-CoV-2. “È la tecnologia più rudimentale”, spiega Simone Lanini, dirigente medico dell’Istituto Spallanzani e coordinatore del gruppo di ricerca sul vaccino ReiThera, a Dottore ma è vero che “e per questo in Europa e in nord America probabilmente non verrà mai approvata per motivi di sicurezza e immunogenetici, mentre è in corso di sperimentazione in Cina e in India”. Il vaccino dell’azienda cinese Sinovac Biotech è un candidato vaccino anti Covid-19 inattivato.
- Vaccini a subunità: i candidati vaccini anti Covid-19 che rientrano in questa categoria contengono la proteina S di SARS-CoV-2 o parti di essa, che il sistema immunitario utilizza per indurre l’immunità, come succede con gran parte dei vaccini anti SARS e MERS. In laboratorio la proteina viene prodotta all’interno di bioreattori da lieviti o batteri e successivamente viene estratta, purificata e iniettata nell’individuo, spiega Lanini. “Questa tecnologia dovrebbe essere utilizzata anche in Europa: al momento la sta utilizzando Sanofi, ma è ancora agli studi clinici di prima fase”.
- Vaccini genetici: invece di iniettare direttamente la proteina S, questi vaccini trasferiscono all’individuo la parte del materiale genetico di SARS-CoV-2 che contiene le istruzioni necessarie per costruirla. In pratica, suggerisce Lanini, “è come se si usassero le cellule stesse dell’organismo come piccoli bioreattori”. Nei vaccini genetici a mRNA, come i vaccini di Pfizer e Moderna – i due finora approvati dalla European Medicines Agency e, in Italia, dall’Agenzia Italiana del Farmaco – il materiale genetico del virus viene veicolato nella cellula attraverso nanoparticelle di lipidi (grassi), che si fondono con la membrana cellulare. Nei vaccini genetici a vettore virale, invece, si utilizzano come vettori virus innocui, come gli adenovirus, opportunamente modificati attraverso tecniche di ingegneria genetica. Il vaccino di ReiThera, quello di Oxford AstraZeneca e quello del centro di ricerca russo Gamaleya sono candidati vaccini anti Covid-19 veicolati tramite vettore virale. “I vaccini genetici hanno il vantaggio di essere più convenienti dal punto di vista economico”, chiarisce Lanini, “perché è meno costoso produrre un mRNA piuttosto che produrre l’intera proteina e poi purificarla”.
Dottore, ma i vaccini genetici come fanno a indurre l’immunità?
Anche se questi vaccini non introducono direttamente la proteina S nell’organismo, trasferiscono però una molecola che permette alla cellula di costruirla. Una volta prodotta la proteina S, si innescano meccanismi comuni anche agli altri tipi di vaccinazione: la proteina viene presentata alle cellule del sistema immunitario, che cominciano a produrre anticorpi specifici. In chi si è vaccinato e viene esposto al contagio in un secondo momento, gli anticorpi così prodotti intercettano la proteina S e impediscono al virus di entrare nelle cellule.
Dottore, ma l’mRNA non potrebbe modificare il codice genetico della cellula, risultando pericoloso?
Uno degli equivoci più diffusi sui vaccini a mRNA è che siano in grado di modificare il DNA della cellula, provocando alterazioni genetiche. In realtà, come spiegato sul sito dell’Istituto Superiore di Sanità [7], gli mRNA hanno il solo compito di trasferire informazioni da una parte (il nucleo) all’altra (il citoplasma) della cellula, compiendo un percorso a senso unico. Proprio per questo si chiamano “messaggeri”. Gli mRNA, dunque, non hanno la possibilità di attraversare la membrana che separa il nucleo dal resto della cellula ed entrare in contatto con il DNA. Inoltre, l’mRNA del vaccino non rimane a lungo nell’organismo, ma si degrada poco dopo la vaccinazione [8].
Argomenti correlati:
CoronavirusMedicinaPrevenzioneVaccinazioniVaccini